

Journal of Fluorine Chemistry 107 (2001) 311-314

www.elsevier.com/locate/jfluchem

Nucleophilic perfluoroalkylation of diaryldisulfides with perfluorocarboxylate salts

Nicolas Roques^{*}

RHODIA Recherches, Centre de Recherche de Lyon (CRL), 85 Avenue des Frères Perret BP 62-69192, Saint-Fons Cedex, France Received 3 April 2000; accepted 11 May 2000

Abstract

A new industrial and economical route to trifluoromethyl aryl sufides by thermal decarboxylation of trifluoroacetate salts has been recently developed. The possibility of generalising this reaction of "trifluorodecarboxylation" to R_fCO_2K (R_f : CCl₃, CF₂Cl, CF₃CF₂, CF₃CF₂CF₂) in order to synthesise R_fSAr has been studied. Thus, the reaction was effective with R_fCO_2K ($R_f = CCl_3$, CF₃CF₂) and a new route to aryl pentafluoroethyl sufides CF₃CF₂SAr has been briefly exemplified. \bigcirc 2001 Elsevier Science B.V. All rights reserved.

Keywords: Trifluoromethylation; Perfluoroalkylation; Arylperfluoroalkylsulfide; Decarboxylation

1. Introduction

The proportion of trifluoromethylated products in life science chemicals is rapidly expanding [1], thus the challenge to develop trifluoromethylating reagents remains important. In this field, direct nucleophilic trifluoromethylation is an attractive reaction. In the past, we thought that the trifluoromethyl anion, due to its low stability, had to be generated in the presence of stoichiometric amounts of metal to prevent α -elimination (Scheme 1). Thus, the trifluoromethyl anion is stabilised due to a chemical bond with a transition metal (CF₃Cu [2] or CF₃ZnX [3]) or with the silicon (CF₃SiMe₃) [4].

During the last 5 years, we have established a new concept in nucleophilic trifluoromethylation stategies. Provided DMF is present, the trifluoromethyl anion can be obtained "naked" and used in organic synthesis without any stabilisation. CF_3^- is generated by trifluoromethane deprotonation [5–9] or thermal decarboxylation of trifluoroacetate salts [10,11]. This strategy allowed us to explore a new industrial and economical route to trifluoromethyl aryl sufides (Schemes 2 and 3).

In the present work, we have investigated the possibility of generalising this reaction of "trifluorodecarboxylation" to R_fCO_2K (R_f : CCl₃, CF₂Cl, CF₃CF₂, CF₃CF₂CF₂) in order to synthesise R_fSAr .

E-mail addresses: nicolas.roques@crit.rhone-poulenc.com, nicolas.roques@eu.rhodia.com (N. Roques).

2. Results and discussions

First, the case of commercially available potassium perhaloacetates (CX₂YCO₂K, (1a-c)) has been studied (Table 1). Thermal decomposition of potassium trifluoroacetate in dimethylformamide, at 140°C, in the presence of diphenyldisulfide led to phenyltrifluoromethylsulfide (2a) with 84% yield (entry 1). The same reaction has been achieved with potassium trichloroacetate (1b) leading to PhSCCl₃ (**2b**) (entry 2, yield = 80%). A reaction temperature of 100°C was adequate, because the thermal decomposition of CCl₃CO₂K occurred at this point. In the case of potassium chlorodifluoroacetate (1c), a few percent of PhSCF₂Cl (**2c**) and PhSCF₂H have been detected by 19 F NMR and GC/MS analysis. An ¹⁹F NMR analysis of the crude reaction mixture has shown that the ClCF₂CO₂K conversion was total (entry 3). This result seemed to suggest that CF_2Cl^- might be less stable in DMF than CF_3^- or CCl_3^- and more difficult to trap by a disulfide (Scheme 4).

Potassium perfluorocarboxylates $(CF_3(CF_2)_nCO_2K, n = 1, 2)$ were then investigated. The result of the thermal decarboxylation of these salts was not obvious because of the instability of the generated anions $CF_3(CF_2)_n^-$. These anions might decompose following a β -elimination process (Scheme 5).

As shown in Table 2, the thermal decarboxylation of potassium pentafluoropropionate (1d) succeeded (entry 4), leading to PhSCF₂CF₃ (2d) with 70% yield, whereas in the case of potassiumheptafluorobutyrate this was not so (entry 5). Indeed, the β -elimination process in this case led to a

^{*} Fax: +33-4-72896894.

^{0022-1139/01/\$ –} see front matter \odot 2001 Elsevier Science B.V. All rights reserved. PII: S 0 0 2 2 - 1 1 3 9 (00) 0 0 3 7 4 - 2

Scheme 1. Trifluoromethyl anion behaviour.

mixture of the "linear sulfide" PhSCF₂CF₂CF₃ (**2e**) (yield = 29%) [12,13] and the "branched sulfide" PhSCF(CF₃)₂ (**3**) (yield = 33%) [12,13]. Another fluorinated compound (**4**) has been detected by ¹⁹F NMR and GC/MS/IR analysis [12,13]. For this product a hypothetical structure has been proposed in Scheme 6.

In order to prove the synthetic interest of the potassium pentafluoropropionate decarboxylation, the reaction has been generalised to other disulfides. As shown in Table 3, the experimental conditions have not been optimised but aryl pentafluoroethyl sufides are obtained with moderate yields. In the case of $(p-NO_2PhS)_2$, it was important to notice that the disulfide was only slightly soluble in the reaction mixture; this problem might explain the low yield.

So, a new and efficient synthesis of aryl pentafluoroethyl sufides has been developed by heating potassium pentafluoropropionate in the presence of diaryldisulfides. For an industrial application, for ecological reasons, this strategy does not suffer from the problem of the ozone depleting effect of the starting material. Indeed, the traditional strategy

Table 1			
Decarboxylation	of CX ₂ YCO ₂ K	in the j	presence of PhSSPh ^a

Entry	CX ₂ YCO ₂ K	θ (°C)	(2a–c), Yield $(\%)^{b}$
1	(1a) CF ₃ CO ₂ K	140	PhSCF ₃ (2a), 84
2	(1b) CCl ₃ CO ₂ K	100	PhSCCl ₃ (2b), 80
3	(1c) CF_2ClCO_2K	140	Traces of PhSCF ₂ Cl
	DME θ° C 6h		

 $\label{eq:constraint} \begin{tabular}{c} {}^{a}CX_{2}YCO_{2}K & \xrightarrow{\text{DMF}, t' \subset \ \ \ o \ n}}_{PhSSPh} CX_{2}YSPh + PhSK + CO_{2}. \\ (1a-c) & \xrightarrow{\text{PhSSPh}} (2a-c) \end{tabular}$

^b Isolated yield.

for the production of CF_3CF_2SAr , is the use of CF_3CF_2X (X = Br, I) [12,13], and chemists who are concerned by environmental problems know that due to their ozone depleting effects all these CF_3CF_2X compounds have been banned by the Montreal Protocol.

3. Experimental

All reagents and solvents were commercial and used as received by using standard syringe techniques. ¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were determined on a Bruker AM 300 spectrometer. Chemical shifts (δ) are expressed in ppm from external standard Me₄Si and CF₃CO₂H. GLC/MS analysis were performed using a Fison MD 800 spectrometer

Scheme 2. Deprotonation of trifluoromethane.

Scheme 3. Decarboxylation of potassium trifluoroacetate.

Scheme 4. CX₂Y anion behaviour.

Scheme 5. Decomposition of perfluoroalkyl carbanions via β-elimination process.

interfaced with a Fison GC 8000 gas chromatograph (DB1 column: $30 \text{ m} \times 0.23 \text{ mm}$ i.d.). GLC analysis were performed using a Varian GC 3400 with a DB1 column $(30 \text{ m} \times 0.53 \text{ mm i.d.}).$

3.1. General procedure

To a solution of CF₃CF₂CO₂K (2.42 g, 12 mmol) in anhydrous DMF (25 ml) was added, at room temperature under nitrogen atmosphere, diaryldisulfide (10 mmol). The reaction mixture was then heated at 140-145°C over 5 h. At the end of the reaction, all the DMF and CF₃CF₂SAr were distilled under reduced pressure (40 Torr). This solution was poured into water and was extracted with ethyl ether. The combined organic fractions were washed with water, dried

Table 2

Decarboxylation of CF₃(CF₂)_nCO₂K in the presence of PhSSPh^a

over MgSO₄, ethyl ether was evaporated and the crude material was then isolated.

3.2. Perfluoroethyl phenyl sulfide (2d)

This compound has been described in the literature by Wakselman [12,13] and the analytical data were identical.

3.3. Heptafluoropropyl phenyl sulfide (2e)

¹⁹F NMR (CDCl₃, 282 MHz), δ: -4.0 ppm (3F, CF₃CF₂-), -11.6 ppm (2F, CF₃CF₂-), -47.5 ppm (2F, CF₂CF₂-SPh). GC/MS (m/z): 278 (M, 49), 259 (M-F, 4), 159 (M-CF₃CF₂, 44), 109 (PhS, 100), 77 (C₆H₅, 40), 69 (CF₃, 26).

3.4. Heptafluoroisopropyl phenyl sulfide (3)

¹⁹F NMR (CDCl₃, 282 MHz), δ: 2.5 ppm (6F, (CF₃)₂CF–), -80.5 ppm (1F, (CF₃)₂CF-).

GC/MS (m/z): 278 (M, 30), 209 (M-CF₃, 6), 109 (PhS, 100), 77 (C₆H₅, 8), 69 (CF₃, 18).

3.5. Fluorinated dihydrobenthiophène (4)

GC/MS/IR(m/z): 240 (M, 100), 220 (M-HF, 7), 177 (M-SCF, 22), 171 (M-CF₃, 36), 109 (PhS, 6), 77 (C₆H₅, 28), 69

y y y z y					
Entry	CF ₃ (CF ₂) _n CO ₂ K	θ (°C)	$(2d-e)$, Yield $(\%)^b$	Comments	
4	CF ₃ CF ₂ CO ₂ K	140	PhSCF ₂ CF ₃ (2d), 70	_	
5	CF ₃ CF ₂ CF ₂ CO ₂ K	130	$PhS(CF_2)_2CF_3$ (2e), 29	Two other fluorinated products detected including PhSCF(CF_3) ₂ (3) (33%)	

 $\frac{{}^{a}\operatorname{CF}_{3}(\operatorname{CF}_{2})_{n}\operatorname{CO}_{2}K}{\underset{n=1,(\operatorname{Id}):n=2,(\operatorname{1e})}{\overset{\mathrm{DMF},\theta^{\circ}C,\operatorname{Gh}}{\underset{}}} \underset{PhSSPh}{\overset{\mathrm{CF}}{\underset{}}} \operatorname{CF}_{3}(\operatorname{CF}_{2})_{n}SPh + PhSK + \operatorname{CO}_{2}.$

^b Yield determined by ¹⁹F NMR with an internal standard.

Scheme 6. Mechanism of the decarboxylation of CF₃CF₂CC₂CO₂K in the presence of PhSSPh.

Table 3 Synthesis of ArSCF₂CF₃^a

(CF₃, 5) et IR: C–F (1350, 1219, 1169), C=C arom. (3081, 1581, 1479).

3.6. Perfluoroethyl p-tolyl sulfide (6a)

¹H NMR (CDCl₃, 300 MHz), δ : 7.49 (d, 2H, ³*J*_{HF} = 8.25 Hz, 2H arom.), 7.26 (d, 2H, ³*J*_{HF} = 8.25 Hz, 2H arom.), 2.29 (s, 3H, CH₃); ¹⁹F NMR (CDCl₃, 282 MHz), δ : -6.87 (t, 3F, ³*J*_{FF} = 3.81 Hz, CF₃), -16.66 (q, 2F, ³*J*_{FF} = 3.81 Hz, CF₂); ¹³C NMR (CDCl₃, 75 MHz), δ : 141.9 (s, C arom., C-CH₃), 136.8 (s, 2C, CH arom.), 130.4 (s, 2C, CH arom.), 119.95 (tq, ¹*J*_{CF} = 286.86 Hz et ²*J*_{CF} = 39.67 Hz, 1C, CF₂), 117.93 (qt, ¹*J*_{CF} = 286.25 Hz et ²*J*_{CF} = 37.23 Hz, 1C, CF₃), 117.70 (s, C arom.), 20.6 (s, 1C, CH₃).

GC/MS (*m*/*z*): 242 (M, 74), 173 (M–CF₃, 3), 123 (M–CF₃CF₂, 100), 91 (C₆H₄Me, 11), 69 (CF₃, 6).

3.7. p-Nitro perfluoroethyl sulfide (6b)

For this compound, the work up was different.

The reaction mixture was heated at $140-145^{\circ}C$ over 5 h and at the end of the reaction, all the DMF was distilled off under reduced pressure (30–10 Torr). The residue was triturated in diisopropyl ether and the remaining solid was filtered off. The organic fraction was washed with water, dried over MgSO₄ and diisopropyl ether was evaporated. The crude material was then isolated.

¹H NMR (CDCl₃, 300 MHz), δ : 8.28 (d, 2H, ³ $J_{\rm HF}$ = 9.07 Hz, 2H arom.), 7.94 (d, 2H, ³ $J_{\rm HF}$ = 9.07 Hz, 2H arom.); ¹⁹F NMR (CDCl₃, 282 MHz), δ : -3.83 (t, 3F,

 ${}^{3}J_{\text{FF}} = 3.05 \text{ Hz}, \text{ CF}_{3}), -12.05 \text{ (q, } 2\text{F}, {}^{3}J_{\text{FF}} = 3.05 \text{ Hz}, \text{ CF}_{2}); {}^{13}\text{C} \text{ NMR} (\text{CDCl}_{3}, 75 \text{ MHz}), \delta: 149.3 \text{ (s, } 1\text{C} \text{ arom.}, \underline{\text{C}}-\text{NO}_{2}), 137 \text{ (s, } 2\text{C}, \text{ CH arom.}), 129.3 \text{ (s, } \text{C} \text{ arom.}), 124.6 \text{ (s, } 2\text{C}, \text{ CH arom.}), 119.80 \text{ (tq, } {}^{1}J_{\text{CF}} = 286.86 \text{ Hz et } {}^{2}J_{\text{CF}} = 40.28 \text{ Hz}, \text{ 1C}, \text{ CF}_{2}), 117.90 \text{ (qt, } {}^{1}J_{\text{CF}} = 286.86 \text{ Hz et } {}^{2}J_{\text{CF}} = 33.62 \text{ Hz}, \text{ 1C}, \text{ CF}_{3}).$

GC/MS (*m*/*z*): 273 (M, 100), 243 (M–NO, 37), 227 (M–NO₂, 5), 204 (M–CF₃, 8), 108 (C₆H₄S, 53), 69 (CF₃, 23).

References

- A. Becker, Inventory of Industrial Fluoro-Biochemicals, Eyrolles, 1996.
- [2] G. Yukihisha, H. Takeshi, Daicel Chemical Industry, JP 0413651 (1990).
- [3] D.M. Viemers, D.J. Burton, J. Am. Chem. Soc. 108 (1986) 832.
- [4] G.A. Olah, R.D. Chambers, G.K.S. Prakash, Synthetic Fluorine Chemistry, Wiley, New York, 1992, p. 227.
- [5] N. Roques, J. Russell, Rhône-Poulenc Chimie, WO 9719038 (1995).
- [6] N. Roques, J. Russell, Rhône-Poulenc Chimie, PCT/FR97/02062 (1997).
- [7] N. Roques, J. Russell, Tetrahedron 54 (1998) 13771.
- [8] B. Folleas, I. Marek, J.F. Normant, L. Saint-Jalmes, Tetrahedron Lett. 39 (1998) 2973.
- [9] C. Mispelaere, N. Roques, Tetrahedron Lett. 40 (1999) 6411.
- [10] G. Forat, J.M. Mas, L. Saint-Jalmes, Rhône-Poulenc Chimie, EP 733614 (1995).
- [11] B. Quiclet-Sire, R.N. Saisic, S.Z. Zard, Tetrahedron Lett. 37 (1996) 9057.
- [12] C. Wakselman, M. Tordeux, J. Org. Chem. 50 (1985) 4047.
- [13] V.I. Popov, J. Org. Chem. USSR 13 (1977) 1985.